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Abstract. The uniaxial structure of Si(001) and Ge(001) facets leads to nontrivial topological
properties of steps and hence to interesting equilibrium phase transitions. The disordered
flat phase and the preroughening transition can be stabilized without the need for step–step
interactions. A model describing this is studied numerically by transfer matrix-type finite-size-
scaling of interface free energies. Its phase diagram contains a flat, rough, and disordered
flat phase, separated by roughening and preroughening transition lines. Our estimate for the
location of the multicritical point where the preroughening line merges with the roughening line,
predicts that Si(001) and Ge(001) undergo preroughening-induced simultaneous deconstruction
transitions.

1. Introduction

The structure of the (001) facets of Si and Ge is very interesting from the point of view
of equilibrium phase transitions. These surfaces have an uniaxial reconstruction [1], where
the uniaxial direction switches by 90◦ at alternating surface heights. Due to this, the mono-
atomic and bi-atomic steps have nontrivial topological properties. This atomic structure
and the crossover from mono-atomic steps in nonvicinal surfaces to bi-atomic steps in
vicinal surfaces have been studied extensively [2–5]. Roughening-type phase transitions in
these surfaces close to the melting temperature, are another interesting topic [6, 7]. It was
suggested earlier by den Nijs [7] that this unusual topology leads to disordered flat (DOF)
phases and preroughening (PR) transitions without a need for step–step interactions. In this
paper we present a detailed numerical transfer matrix finite-size-scaling (FSS) study of the
model introduced in [7].

Consider a surface such as Si(001), but one which does not reconstruct. Such a surface
is still uniaxial and still switches by 90◦ at alternating surface heights. At finite temperature
T , thermodynamically excited steps appear. They separate domains of flat regions. The
uniaxial structure leads to two distinct types of mono-atomic steps, labelled bySA andSB.
The subscripts denote whether the uniaxial direction in the upper terrace near the step is
parallel (A) or normal (B) to the step edge. Considering the fact that the uniaxial direction
switches by 90◦ at alternating surface heights, one finds, as shown in figure 1, that the steps
have the following topological properties [7]: (i) if two neighbouring parallel steps are of
the same type, one must be an up step and the other a down step, (ii) if a step turns over
90◦ it must change its type, fromSA to SB and vice versa. Bi-atomic steps exist as well [5],
but they are probably unfavourable due to large free-energy cost close to the roughening
temperature [7].
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Figure 1. Topology of SA- and SB-type step excitations on an unreconstructed Si(001) type
surface.

These topological properties imply that terrace excitations have an ellipsoid shape, and
that the long axes of nested terraces are parallel (perpendicular) if the height change is
up–down or down–up (up–up or down–down) across the nested terraces. This creates an
entropic penalty against forming hills and valleys. In other words, it opens the possibility
to stabilize a DOF phase without the need for step–step interactions [7]. In the DOF phase
the surface contains a disordered array of steps. But it remains flat on average because
the steps have long-range up–down–up–down order. Thus far step–step interactions were
believed to be crucial for the existence of DOF phases. In this surface topology, however,
the DOF phase originates directly from the uniaxial structure of the surface.

The restricted solid-on-solid (RSOS) model on a square lattice with the Hamiltonian

H =
∑
r

{
K(h(x + 1, y)− h(x, y))2+1 sin

[π
2
(h(x, y)+ h(x + 1, y))

]}
+
∑
r

{
K(h(x, y + 1)− h(x, y))2−1 sin

[π
2
(h(x, y)+ h(x, y + 1))

]}
(1)

was introduced in [7] to describe the thermodynamic properties of such steps in more
detail. h(r) is an integer-valued height variable at each siter = (x, y). Height differences
between the nearest-neighbour sites are restricted to 0 and±1. This means that only mono-
atomic steps are allowed. Bi-atomic steps can be included in a later stage if experimental
evidence shows they remain important close to roughening temperatures. The model of
equation (1) contains two parameters. The1 terms distinguish betweenSA- and SB-type
steps:EA = K −1 andEB = K +1 are the step energies. Without loss of generality, the
uniaxial direction is taken to run vertically (horizontally) at even (odd) heights.

The model Hamiltonian contains two limiting cases. The conventional RSOS model at
1 = 0 displays a Kosterlitz–Thouless (KT)-type roughening transition between the flat and
rough phases [8]. On the other hand, in the limit whereEA = 0 andT = 0, SA steps cost
no energy whileSB steps are frozen out. In a typical configuration the surface contains a set
of randomly placed parallelSA steps in the form of straight lines. However, the topological
rule (i) requires that they are alternating up and down steps. This is a typical morphology
of surfaces in the DOF phase [9]. The DOF phase is an intermediate phase between the
flat and rough phases, where the steps are disordered positionally but have long-range up–
down–up–down order. It was argued in [7] that this DOF-type structure is stable at finite
temperatures, in terms of a fermionic-type perturbation theory.

In this paper, we investigate the phase diagram quantitatively through a detailed transfer
matrix FSS study. It is important to confirm the existence of the DOF phase numerically.
The analysis in [7] was mostly qualitative. The other purpose of this work is to obtain
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Figure 2. The phase diagram of the model defined in equation (1). The roughening transition
curves are obtained fromSH1 = π

2 for N = 6 (�), 8 (◦ ), and 10 (M). Preroughening transition
curves are obtained from the crossing points ofx(N) andx(N − 2) for N = 6 (�), 8 (◦ ), 10
(M) and 12 (O). The transition points(EA , EB) are calculated only in the regionEB > EA,
and they are represented also in the regionEB < EA using (EB, EA) because the model is
symmetric upon the change ofEA andEB. The curves between the data points are guides to
the eyes.

a good estimate for the critical value of the ratior ≡ EB/EA, below which the DOF
phase disappears, see Fig. 2. In real surfaces this ratio takes specific values. For example,
observations of step fluctuations in STM and LEED experiments yield for Si(001) that
r ∼ 3 (EA = 325K andEB = 1045K) [10]. By comparing this ratio with the critical value
rc, one can decide which path the Si(001) surface follows.

Our model, equation (1), does not incorporate the 2× 1-type dimerized surface
reconstruction of Si and Ge(001). Therefore it does not describe the competition between
surface reconstruction and surface roughening in those surfaces. This issue was addressed in
[7]. The preroughening line in figure 2 is most likely replaced by a PR-induced simultaneous
deconstruction transition and the roughening line segment atr < rc by a roughening-induced
simultaneous deconstruction transition. A proper quantitative description of this requires at
least a RSOS model coupled to an Ising model, similar to the one that describes Au(110)
facets [11, 12]. We did not study such a model, since the number of degrees of freedom
probably becomes too large to obtain meaningful transfer-matrix FSS results. The precise
location ofrc in figure 2 is the result of a delicate entropy balancing act of nested terraces
associated with the peculiar 90◦ switching in the uniaxial direction. Our value ofrc should
be meaningful for Si(001) and Ge(001) if the coupling with the Ising degrees of freedom
does not change the value ofrc by too much, which is a reasonable assumption.

In section 2, we introduce various kinds of interface free energies. They decompose
into the free energies ofSA- andSB-type steps, and show distinct FSS behaviours in the flat,
DOF, and rough phases. We obtain the phase diagram figure 2, by evaluating these interface
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free energies using the transfer-matrix method. The numerical results and a summary are
presented in section 3.

2. Interfaces and the transfer matrix formalism

Consider the model given by equation (1) on a finiteN ×M lattice with periodic boundary
conditions (PBCs),h(x + N, y) = h(x, y) and h(x, y +M) = h(x, y). The ordered flat
phase is commensurate with PBCs. Other (gauge invariant) boundary conditions (BCs)
create frustrations, and thus impose steps in the surface. The interface free energyη is
defined as the excess free energy per unit length for each type of BC compared with that
of PBCs. Their FSS behaviours are different in the various phases. We obtain the structure
of the phase transitions by studying suitable ones.

The Hamiltonian in equation (1) is invariant under the global transformations

h(r)→ h(r)+ 2n (2)

h(r)→−h(r)+ 1(mod 2) (3)

for all integersn. So it is natural to consider the following boundary conditions: step-type
BCs withh(x+N, y) = h(x, y)+2 andh(x, y+M) = h(x, y); and antiperiodic-type BCs
with h(x+N, y) = −h(x, y)+1(mod 2) andh(x, y+M) = h(x, y). We will refer to them
as H1 and H2 respectively. Similarly, V1 and V2 refer to the same BCs but with the roles
of theM andN interchanged. The interface free energies are defined by

ηα = − 1

M
ln

Zα

ZPBC
(α = H1,H2)

ηβ = − 1

N
ln

Zβ

ZPBC
(β = V1,V2)

with Zα the partition function satisfying the boundary conditionα, and all energies and free
energies measured in units ofkBT .

Figure 3 shows the topological frustrations induced by these BCs. H1 and V1 require at
least two parallel steps; one is anSA-type step and the other anSB-type step (see figures 3(a)
and (c)). Therefore,ηH1 and ηV1 decompose intoηA + ηB; with ηA and ηB the SA- and
SB-step free energies. On the other hand, H2 and V2 can be satisfied by configurations with
only oneSA-type step (see figures 3(b) and (d)). Therefore,ηH2 andηV2 are equal intoηA.

These interface free energies must behave in a specific way in each type of phase. The
step free energyηB is finite in the flat phase and also in the DOF phase, but vanishes in the

Figure 3. Step excitation-type frustrations induced by (a) H1, (b) H2, (c) V1 and (d) V2
boundary conditions. The uniaxial direction in each domain of flat region is shown to help
identify the steps.
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Figure 4. The transfer matrix set-up. The rows of a square lattice are rotated by 45◦. The
aspect ratioζ between the lattice constants in the horizontal and vertical directions is equal to
2. Height and step variables are defined on the faces and bonds of the lattice, respectively.

rough phase. The step free energyηA, is finite in the flat phase, but vanishes in both the
DOF and rough phase. Therefore, in the flat phase, all fourηα (α = H1, H2, V1, V2) are
finite. In the DOF phase,ηH1 andηV1 remain finite, butηH2 andηV2 vanish (exponentially
with system size). In the rough phase, all fourηα vanish (as a power law in the infiniteM
and/orN limit).

The rough phase is a critical phase where its critical fluctuations are described by the
Gaussian model. The height-difference correlation function diverges logarithmically with
distance:

〈(h(r)− h(r′))2〉 ' 1

πKg
ln |r − r′|

whereKg is the coupling constant of the Gaussian model (also called the stiffness constant).
It varies continuously in the rough phase and takes the universal valueπ

2 at roughening
transitions. The interface free energies vanish in the rough phase as power laws. In a
semi-infinite geometryM →∞, ηH1 andηH2 scale asymptotically as [9]

ηH1 = 2ζKg
N

(4)

ηH2 = πζ

4N
(5)

whereζ is the aspect ratio of the lattice constants in the spatial direction and the time-like
direction (i.e. the direction in which the transfer matrix adds one row of lattice sites each
time).

We evaluate the interface free energies through the transfer matrix. Consider the transfer
matrix for a square lattice rotated by 45◦ as shown in figure 4. In our units the aspect ratio
is equal toζ = 2; one unit in time,aτ is twice as big as the spatial unitax . A height
configuration(h0, h1, . . . , hN) in a row is represented by a state vector|h0, h1, . . . , hN 〉.
It is convenient to replace the height variables by step variablessi ≡ hi − hi−1, with
i = 1, . . . , N . They take only the values 0, and±1 due to the restricted solid-on-solid
condition. The surface configuration in each row is therefore represented by|h0, s〉 wheres
stands for(s1, s2, . . . , sN). The elements of the transfer matrixT are the Boltzmann weights
associated with height configurations|h0, s〉 and|h′0, t〉 in successive rows.T is sparse, and
can be expressed in terms of a product over local vertex-type scattering matrices, acting on
the |h0, s〉 and|h′0, t〉 in successive rows and intermediate internal step variablesu, defined
in figure 4.

In the case of PBCs the step variables satisfy the conditionssi+N = si and
∑N

i=1 si = 0
in all rows. The partition function,ZPBC= Tr TMPBC, and the free energy, are obtained from
the largest eigenvalue e−EPBC of TPBC in theM →∞ limit.
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The transfer matricesTH1 andTH2 for the horizontal BCs H1 and H2 are easily defined.
Only the conditions that the step variables must satisfy change. In the case of H1, the step
variables are again periodic,si+N = si , but with

∑N
i=1 si = 2 in all rows. In the case of H2,

the step variables are antiperiodic,si+N = −si , with no restriction in the value of
∑N

i=1 si .
The partition function in each case is given byZα = TrTMα and the free energy, in the
M →∞ limit, is again obtained from the largest eigenvalue e−Eα of Tα (α = H1 and H2).
So the interface free energies are given by

ηH1 = EH1− EPBC (6)

ηH2 = EH2− EPBC. (7)

The transfer matrices for the two vertical BCs are more intricate. They involve the
symmetry properties equation (2) and equation (3) of the transfer matrix with PBCs. The
translation invariance in the surface heights, equation (2), implies thatTPBC commutes with
the symmetry operator

P|h, s〉 = |h+ 2, s〉. (8)

Therefore, it is useful to distinguish between two classes of surface states,{|e, s〉} and
{|o, s〉}, i.e. all states withh even and odd, respectively. From the parity-type symmetry
property equation (3) it follows thatTPBC commutes also with the operatorR, defined by

R|e, s〉 = |o,−s〉
R|o, s〉 = |e,−s〉

where−s stands for(−s1,−s2, . . . ,−sN). The transfer matrices for the vertical BCs can
be expressed in term ofTPBC, P, andR asZV1 = Tr [TMPBCP] andZV2 = Tr [TMPBCR].

To evaluateZV1 one needs to keep track of the height in the first column modulo 4.
This makes this boundary condition less useful than its horizontal counter part H1, where
we do not need to keep track of the absolute height of the surface, and therefore can drop
the h0 label of the surface configurations altogether. So we discardZV1 in the following
analysis.

On the other hand,ZV2 is very useful. It can be written as

ZV2 =
∑
i

e−MEPBC(i) −
∑
i

e−ME
′
PBC(i)| (9)

where e−EPBC(i) (e−E
′
PBC(i)) is the ith largest eigenvalue ofTPBC in theR = +1(−1) sector.

By theR = +1(−1) sector, we mean the set of state vectors which are eigenvectors ofR
with the eigenvalue+1(−1). Unlike horizontal boundary conditions,ηV2 depends on the
entire eigenvalue spectra. However, in the thermodynamic limit, it can be approximated,
up to the leading order, as

ηV2 ' − 1

N
ln

e−MEPBC − e−ME
′
PBC

e−MEPBC + e−ME′PBC

whereEPBC (E′PBC) is the largest eigenvalue ofTPBC in theR = +1 (−1) sector. So the
scaling behaviour ofηV2 is determined from the quantity

m = E′PBC− EPBC (10)

i.e. the mass gap between the twoR-sectors. From the fact thatηV2 is finite in the flat
phase and vanishes in the DOF and rough phases, it follows that this mass gap should be
finite in the DOF phase and vanish in the flat phase. We will use both V2 and H2 to locate
the preroughening phase boundary.
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Figure 5. Typical data of the FSS amplitude of the interface free energies (a) ηH1, (b) ηH2 and
(c) the mass gapm. Different symbols (�, N = 6; ◦ , N = 8; M, N = 10; O, N = 12) are
used to distinguish the strip widthsN . The curves are guides to the eyes.

3. Numerical results and summary

The largest eigenvalues in each sector of the transfer matrix are obtained using the
conventional iteration method. An arbitrary initial vector projects onto the largest
eigenvector by applying the transfer matrix repeatedly.EPBC, EH1, andEH2 are easily
found by this method.E′PBC is obtained by choosing the initial vector in theR = −1
sector. The state vector is(2× 3N)-dimensional for a semi-infinite strip of widthN . The
maximum strip width we can handle isN = 12.

First, we focus on particular paths through the parameter space to illustrate the existence
of the rough, DOF, and the flat phases. The FSS amplitude

SH1(N) ≡ ηH1N

2ζ
(11)

of the H1 type interface must converge toKg in the rough phase (see equation (4)).
Numerical data ofSH1(N) along the curveEA = 0.1 are presented in figure 5(a). It shows
thatηH1 scales as1

N
with continuously varying amplitudes at smallEB (high temperatures).

The 1
N

scaling breaks down at largeEB. This means thatηA or ηB becomes nonzero.
The roughening transition should take place whenSH1(N) reaches the universal Kosterlitz–
Thouless valueπ2 . This value is marked in figure 5(a) by a broken curve, and indeed it
crosses the numerical curve in the crossover region. So the numerical data in figure 5(a)
support that there is the rough phase at high temperatures, separated from the DOF or flat
phase through a KT roughening transition.

We present also the FSS amplitudes of the interface free energyηH2 and the mass gap
m, defined by

SH2(N) ≡ ηH2N

ζ
(12)

x(N) ≡ mN

ζ
(13)

along the curveEB = 3.0 in figures 5(b) and (c). Both quantities show crossing points.
They signal the crossover between two regions. One whereηA, the SA-step free energy,
vanishes (at smallEB ) and one where it is finite (at largeEB). This confirms the existence
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of the DOF phase and the PR transition, since these free energy gaps must be finite in
the flat phase but converge exponentially to zero in the DOF phase. For some reason, the
convergence for V2 is dramatically better than for H2.

At KT-type roughening transitions, the stiffness constant takes the universal valueπ
2 .

So we obtain a sequence of estimates of the roughening transition curve by applying the
conditionSH1(N) = π

2 for eachN . These are the roughening data points shown in figure 2.
A sequence of estimates for the PR transition line between the flat and DOF phase can be
obtained from the crossing points ofx(N) and x(N − 2), and also those ofSH2(N) and
SH2(N − 2). In figure 2 we show only the crossing points of V2 forN = 6, 8, 10 and 12.
(Those of H2 are much less convergent, see figure 5(b) and (c)).

The scaling theory of PR transitions, tells us that the critical fluctuations are described
by the Gaussian model, but withKg greater than the universal KT valueπ2 of the roughening
transition [13, 11]. We investigate this scaling behaviour by studying the FSS amplitudes
of ηH2 andm. In the Gaussian model,SH2(N), does not vary continuously, instead it takes
the universal valueπ/4 (see equation (5)). On the other hand, the V2-type mass gap should
scale as [14]

m = π2ζ

2KgN
. (14)

This is related to the fact that at1 = 0, theR = −1 andR = +1 sectors ofTPBC are
equivalent apart from a phase factor eiπs1 attached to all step variabless1 at the seam (the
first column of the lattice).

In figure 6(a) we present the FSS amplitude of the mass gapm. The vertical axis is
scaled asπ2ζ/(2mN), such that it representsKg, see equation (14).Kg starts off close
to the universal valueπ2 in the neighbourhood of the roughening transition, atEB ' 0.8,
and increases withEB. This is in accordance with the assertion that the PR transition is
described by the Gaussian model with continuously varyingKg greater thanπ2 . The FSS
behaviour ofSH2 along the PR line is shown in figure 6(b). The broken curve denotes
the universal valueπ4 of the Gaussian model. The data at largeEB remain far from the

Figure 6. FSS amplitudes of (a) m and (b) ηH2 along the preroughening transition line. Different
symbols (�, N = 6; ◦ , N = 8; M, N = 10; O, N = 12) are used to distinguish the strip
widthsN .
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Figure 7. Estimates(EAc (N),EBc (N)) for the location of the multicritical point forN =
6, 8, 10, and 12. The extrapolated values are marked by arrows.

universal value, though approach it. Like before, the convergence of this quantity is poor
(see also figure 5(b)).

The PR transition line in figure 2 seems to penetrate into the rough phase. But this
does not mean that there is another transition inside the rough phase. The rough phase is a
critical phase where the mass gap scales as O(1/N) on either side of the crossing points.
The presence of crossing points of V2 inside the rough phase represents only a turn around
in the corrections to scaling amplitudes for the amplitude.

The crossing of the two sets of curves in figure 2, the estimates for the roughening
and PR lines, confirms the existence of a multicritical point(EAc , EBc) where the PR
and roughening transitions merge. A sequence of estimates(EAc(N),EBC (N)) for the
multicritical point is obtained by solving the two conditionsSH1(N) = π

2 and x(N) =
x(N − 2) simultaneously for each value ofN = 6, 8, 10, and 12. These estimates are
shown in figure 7. The arrows point towards power-law extrapolated values:

EAc = 0.41± 0.03 (15)

EBc = 0.89± 0.01. (16)

In summary, we have investigated the phase transitions in a model system for Si(001)
or Ge(001)-type crystal surfaces with an uniaxial structure that switches direction at each
mono-atomic step. We obtained the phase diagram from a numerical FSS study of the
transfer matrix spectra. It consists of flat, rough, and DOF phases. The unusual topological
properties of the surface stabilize the DOF phase in the absence of step–step interactions,
which are crucial for the stabilization of the DOF phase in conventional surfaces. The
location of the multicritical point where the PR transition curve merges with the roughening
transition curve is determined numerically,rc ' 2.2.

Specific crystals follow paths through figure 2 resembling straight lines as a function
of temperature, since the step energies are approximately constant. Our results shows that
if the ratio r = EB/EA is greater than a critical valuerc ' 2.2, the flat unreconstructed
crystal undergoes a PR transition into the DOF phase followed by a roughening transition.
In Si(001) surfaces, the ratio between the step energies is larger,r ' 3 [10]. We suggest
therefore that Si(001) undergoes PR-induced simultaneous deconstruction transition [7].
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